OPTIMUM PERFORMANCE-BASED DESIGN OF CONCENTRICALLY BRACED STEEL FRAMES SUBJECTED TO NEAR-FAULT GROUND MOTION EXCITATIONS
Authors
Abstract:
This paper presents a practical methodology for optimization of concentrically braced steel frames subjected to forward directivity near-fault ground motions, based on the concept of uniform deformation theory. This is performed by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In this regard, to overcome the complexity of the ordinary steel concentrically braced frames a simplified analytical model for seismic response prediction of concentrically braced frames is utulized. In this approach, a multistory frame is reduced to an equivalent shear-building model by performing a pushover analysis. A conventional shear-building model has been modified by introducing supplementary springs to account for flexural displacements in addition to shear displacements. It is shown that modified shear-building models provide a better estimation of the nonlinear dynamic response of real framed structures compared to nonlinear static procedures. Finally, the reliability of the proposed methodology has been verified by conducting nonlinear dynamic analysis on 5, 10 and 15 story frames subjected to 20 forward directivity pulse type near-fault ground motions.
similar resources
Evaluation of 2D concentrically braced frames with cylindrical dampers subjected to near-field earthquake ground motions
Near field earthquakes have imposed major damage to buildings in the past years. In some cases, the intensity of such damage is too considerable to be disregarded. The most effective way to improve seismic performance of buildings is applying a seismic control technique. The cylindrical friction damper is one of these methods, which has become popular for its desirable performance in the energy...
full textSelection of Optimal Intensity Measure for Seismic Assessment of Steel Buckling Restrained Braced Frames under Near-Fault Ground Motions
Buckling restrained braces (BRBs) have a similar behavior under compression and tension loadings. Therefore, they can be applied as a favorable lateral load resisting system for structures. In the performance-based earthquake engineering (PBEE) framework, an intermediate variable called intensity measure (IM) links the seismic hazard analysis with the structural response analyses. An optimal IM...
full textConcentrically Braced Frames: European vs. North American Seismic Design Provisions
A critical review of seismic design provisions for concentrically braced frames (CBFs) in both European and North American (i.e. US and Canadian) codes is presented in this paper. Indeed, even though those codes are based on capacity design philosophy, different requirements and different approaches are used to guarantee the hierarchy of resistances between dissipative and non-dissipative eleme...
full textAssessment of Near-Fault Ground Motion Effects on the Fragility Curves of Tall Steel Moment Resisting Frames
Nowadays it is common to use the fragility curves in probabilistic methods to determine the collapse probability resulting from an earthquake. The uncertainties exist in intensity and frequency content of the earthquake records are considered as the most effective parameters in developing the fragility curves. The pulse-type records reported in the near-fault regions might lead to the major dam...
full textOPTIMAL GROUND MOTION SCALING USING ENHANCED SWARM INTELLIGENCE FOR SIZING DESIGN OF STEEL FRAMES
Dynamic structural responses via time history analysis are highly dependent to characteristics of selected records as the seismic excitation. Ground motion scaling is a well-known solution to reduce such a dependency and increase reliability to the dynamic results. The present work, formulate a twofold problem for optimal spectral matching and performing consequent sizing optimization based on ...
full textResponse of Buildings with Inclined First-Story Columns to Near-Fault Ground Motion
In this paper a simple model of a three story building with inclined first-story columns has presented. The stories are supposed to be rigid and are connected to axially rigid mass less columns by elasto-plastic rotational springs and linear rotational dampers. The considered model is subjected to horizontal component of fault normal pulse with different magnitudes and the governed nonlinear di...
full textMy Resources
Journal title
volume 9 issue 2
pages 177- 193
publication date 2019-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023